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a b s t r a c t 

In order to explore the impacts of the time-delayed velocity difference and backward look- 

ing effect on traffic flow, this paper proposes an improved car-following model based on 

the full velocity difference model (FVDM) by accounting for the time-delayed velocity dif- 

ference and backward looking effect. The linear stability condition of the proposed model 

is derived by taking advantage of the linear stability theory. The time-dependent Ginzburg- 

Landau (TDGL) equation and the modified Korteweg-de Vries (mKdV) equation are estab- 

lished based on the nonlinear theory to describe the evolution of the traffic density waves 

near the critical stability point. Moreover, the link between the TDGL and mKdV equations 

is also provided. Finally, the results from both the numerical simulation and the theoreti- 

cal analysis show that the proposed model can not only strengthen the stability of traffic 

flow, but also suppress the traffic congestion. 

© 2020 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

With the rapid development of social economy, the speed of construction of road facilities is far less than the rate of

increase of vehicles, which leads to the worsening of traffic conditions, and brings a series of traffic problems such as traffic

jam, traffic safety and so on. In addition, with the increase of vehicle density, the characteristics of vehicle interaction be-

come more and more obvious. Drivers need to pay attention to more and more information, arousing considerable concerns

from many aspects [1–3] . Considering the above situation, many traffic models have been proposed to analyze traffic behav-

ior and interpret complex traffic phenomena, which mainly include car-following models [4–7] , cellular automation models

[8,9] , continuum models [10,11] and lattice hydrodynamic models [12,13] . 

The optimal velocity model (OVM), proposed by Bando et al. [14] in 1995, is a classic car-following model to describe the

actual traffic flow phenomena, such as the spread of traffic jams, stop and go. In order to solve the problems of very high

acceleration and unreasonable deceleration, drawbacks exhibited by the OVM, in 1998, Helbing and Tilch [15] developed

a generalized force model (GFM) by accounting for the negative velocity difference based on the OVM. The GFM takes

into account only the influence of the negative velocity difference to the current car, which is a problem that, in 2001,

Jiang et al. [16] solved, by proposing the full velocity difference model (FVDM), where the positive velocity difference is

considered, based on the GFM. In 2012, Sun et al. [17] presented the backward looking and velocity difference (BLVD) model

by introducing the backward looking effect on the basis of the FVDM. According to the above analysis, the performance of
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the models proves to be constantly improving. In the actual driving process of the vehicle, the driver will adjust the velocity

difference with the preceding vehicle in real time, in order to maintain the optimal velocity. At the same time, to ensure

safe driving, the driver will also observe the rear vehicle’s situation through the rear-view mirror of the vehicle. 

There are a lot of nonlinear phenomena in actual traffic system, and traffic jam is the most typical nonlinear phenomenon

in traffic flow. In recent years, many researchers study the traffic jam by using the nonlinear analysis. Komastu and Sasa

[18] derived the mKdV equation to investigate the long time behavior near a critical point and describe traffic jams. Na-

gatani [19] derived the TDGL equation from the car-following model to describe traffic jams as kink-antikink density waves.

Peng et al. [20] estimated the impact of optimal velocity changes with memory on jam transition by deriving the mKdV

equation. Chen et al. [21] obtained the kink-antikink solution of the TDGL equation and the mKdV equation from an im-

proved car-following model in Intelligent Transportation System. Song et al. [22] derived the TDGL equation and the mKdV

equation, they showed that traffic jams can be described by the kink-antikink solution of the TDGL equation and the mKdV

equation. According to different equation parameters and initial conditions, different equations and their corresponding so-

lutions can be obtained [23] . Li et al. [24] derived the Burgers equation, Korteweg-de Vries (KdV) equation and mKdV equa-

tion respectively in stable, metastable and unstable regions in terms of equation parameters and initial conditions. Nagatani

[25] found that triangular shock wave, soliton wave and kink-antikink wave appear respectively in the three regions of traffic

flow, which are described by the Burgers, KdV and mKdV equations. Zhou et al. [26] studied the traffic wave of the optimal

velocity difference model and described traffic jams by using the Burgers, KdV and mKdV equations. 

As early as in 1958, time delay was recognized as an important influencing parameter in traffic research [27] . It is mainly

derived from the time required by the driver from perceiving the changes in the surrounding environment to acting accord-

ingly, while it is mainly influenced by the driver’s own condition and the surrounding environment. Time delay might have

an important effect on traffic flow characteristics. Therefore, it is necessary to conduct more in-depth research on time delay

in traffic flow. Davis [28] studied the effects of time delay due to driver reaction times through simulations and analysis of

the OVM of traffic dynamics. Orosz et al. [29,30] discussed the local and global bifurcations of the OVM which features the

reactive time delay of drivers, while Yu et al. [31] researched the density waves of the OVM. Zhou et al. [32] studied the

density waves of the optimal velocity difference model (OVDM), featuring the reaction-time delay of drivers. Zhang et al.

[33] considered the effect of the time-delayed velocity difference on vehicle acceleration due to reactive time delayed effect

of drivers. 

To sum up, these models can describe the phase transition of traffic flow and interpret some actual traffic phenomena.

However, these models are unsuitable for modeling the time-delayed velocity difference and backward looking effect, be-

cause they do not consider these two factors simultaneously. Actually, the time-delayed velocity difference and backward

looking effect, both reflect every driver’s conditions. It takes a period of time for drivers to switch from perceiving the

surrounding environment to acting accordingly. Meanwhile, in order to maintain safe driving, the driver also views the con-

dition of the rear vehicle from the rear-view mirror of the vehicle. By considering the time-delayed velocity difference and

backward looking effect simultaneously, not only the results are closer to the actual traffic, but also the stability of traffic

flow can be enhanced. In light of the aforementioned points, the proposed car-following model is presented based on the

FVDM by taking into account the impacts of the time-delayed velocity difference and backward looking effect on traffic flow

in this paper. For reasons of convenience, the proposed model is abbreviated as the TVBL model. 

The contributions of this paper are: 

(1) The problem of how to better describe traffic behavior and avoid the traffic jams under the vehicles interact envi-

ronment is solved by proposing an improved car-following model. Some previous studies have considered the time-

delayed velocity difference and backward looking effect separately. However, they have never considered the above

two factors simultaneously. In this paper, an improved car-following model considering the impacts of the time-

delayed velocity difference and backward looking effect on traffic flow is proposed. Considering more information,

the evolution of traffic flow and the mechanism of vehicle movement under the increasingly obvious vehicle interac-

tion can be better described. 

(2) The theoretical analysis is applied to analyze the performance of the extended car-following model. Through linear

and nonlinear analysis, the performance of the improved model is much better than that of the previous models

which consider the time-delayed velocity difference and backward looking effect separately. Simulation is used to

verify the accuracy of the theoretical analysis. The simulation shows that not only the results are closer to the actual

traffic flow, but also the stability of traffic flow can be enhanced. The simulation results are in accordance with the

conclusions of the theoretical analysis. 

The remainder of the paper is organized as follows. In Section 2 , a modified car-following model is put forward, con-

sidering the time-delayed velocity difference and backward looking effect. In Section 3 , the stability analysis is presented,

based on the linear stability theory. In Section 4 , the nonlinear stability analysis near the critical stability point for the TVBL

model is carried out, and the TDGL equation is derived. In Section 5 , the mKdV equation is obtained. In Section 6 , numer-

ical simulation is carried out to verify the results of the theoretical analysis, while the complete study is summarized in

Section 7 . 
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2. Model 

The optimal velocity model (OVM), proposed by Bando et al. [14] in 1995, is a classic car-following model, to describe

the actual traffic flow phenomena, such as the spread of traffic jams, stop and go. The dynamic Eq. (1) is shown. 

dv n ( t ) 
dt 

= α[ V ( �x n ( t ) ) − v n ( t ) ] (1)

where α is the sensitivity coefficient of the driver’s distance, v n ( t ) is the velocity of car n at time t , �x n (t) = x n +1 (t) − x n (t)

is the distance difference between the (n + 1) th and the n th vehicles at time t, V ( �x n ( t )) is the optimal velocity function. 

In order to solve the problems of very high acceleration and unreasonable deceleration, drawbacks exhibited by the OVM,

in 1998, Helbing and Tilch [15] developed a generalized force model (GFM) by accounting for the negative velocity difference

based on the OVM. The respective dynamic Eq. (2) is given. 

dv n ( t ) 
dt 

= α[ V ( �x n ( t ) ) − v n ( t ) ] + λH ( −�v n (t) ) �v n ( t ) (2)

where H is the Heaviside function, λ is different from the sensitivity coefficient of α, �v n (t) = v n +1 (t) − v n ( t ) is the velocity

difference between the (n + 1) th and the n th vehicles at time t . 

The GFM takes into account only the influence of the negative velocity difference to the current car, which is a problem

that, in 2001, Jiang et al. [16] solved, by proposing the full velocity difference model (FVDM), where the positive velocity

difference is considered, based on the GFM. The model Eq. (3) is given. 

dv n ( t ) 
dt 

= α[ V ( �x n (t) ) − v n (t) ] + k �v n (t) (3)

where k = λα is the sensitivity coefficient of the relative velocity. 

In 2012, Sun et al. [17] presented the backward looking and velocity difference (BLVD) model by introducing the backward

looking effect on the basis of the FVDM. The dynamic Eq. (4) is shown. 

dv n (t) 

dt 
= α[ pV F ( �x n (t) ) + ( 1 − p ) V B ( �x n −1 (t) ) − v n (t) ] + k �v n (t) (4)

where �x n −1 (t) = x n (t) − x n −1 (t) is the distance difference between car n and car n − 1 at time t, p represents the relative

roles of the two optimal velocity functions, V F ( �x n ( t )) and V B (�x n −1 (t)) are the optimal velocity functions for forward and

backward observations, respectively. 

Based on the FVDM and considering the complexity of the actual traffic, it takes few time for drivers to respond to

the current traffic circumstances. At the same time, in order to drive safely, the driver also observes the rear vehicle’s state

through the rear-view mirror of the vehicle. In light of the aforementioned facts, a modified car-following model is proposed

considering the time-delayed velocity difference and backward looking effect, which can be formulated in Eq. (5) . 

dv n (t) 

dt 
= α[ pV F ( �x n (t) ) + ( 1 − p ) V B ( �x n −1 ( t ) ) − v n ( t ) ] + k �v n ( t ) + r [ v n ( t ) − v n ( t − t d ) ] (5)

where t d is the reaction-time delay of drivers, assuming that all drivers have the same reaction-time delay, α is the sensi-

tivity coefficient corresponding to the inverse of the delay time τ , v n (t) − v n (t − t d ) represents the velocity difference of car

n between time t and time t − t d due to reactive time t d delayed effect, r is the sensitivity coefficient of the time-delayed

velocity difference v n (t) − v n (t − t d ) , and the optimal velocity functions are proposed in Eqs. (6) and (7) . 

V F ( �x n ( t ) ) = α′ [ tanh ( �x n ( t ) − h c ) + tanh ( h c ) ] (6)

V B ( �x n −1 ( t ) ) = −α′′ [ tanh ( �x n −1 ( t ) − h c ) + tanh ( h c ) ] (7)

where α′ , α′′ are positive constants. The function V F has a turning point �x n = h c : V 
′′ 
F ( h c ) = 0 and the function V B has also

a turning point �x n −1 = h c : V 
′′ 
B ( h c ) = 0 . When p � = 1 and r = 0 , the TVBL model just considers the influences of the front

vehicle’s state and backward looking effect on the current car, hence the BLVD model is derived. When p = 1 and r = 0 ,

the TVBL model becomes the FVDM, while it does not consider the influences of the time-delayed velocity difference and

backward looking effect on the current car. 

3. Linear stability analysis 

Linear stability analysis methodology is applied to study the performance of the TVBL model under small perturbations.

Assuming the initial state of traffic flow is stable, and all vehicles are uniformly distributed with the uniform headway h

and the corresponding optimal speed pV F ( h ) + ( 1 − p ) V B ( h ) . Therefore, the vehicle’s position of the steady traffic flow is: 

x 0 n ( t ) = hn + ( pV F ( h ) + ( 1 − p ) V B ( h ) ) t, h = L/N (8)

where L is the length of the road and N is the total number of vehicles. 
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Let y n (t) = e (ikn + zt) be a small deviation from the traffic flow steady state x 0 n (t) : 

x n ( t ) = x 0 n ( t ) + y n ( t ) (9) 

Substituting Eq. (9) into Eq. (5) and linearizing the derived equation, the result is shown in Eq. (10) . 

d 2 y n (t) 

dt 2 
= α

[
pV 

′ 
F ( h ) �y n + ( 1 − p ) V 

′ 
B ( h ) �y n −1 − dy n ( t ) 

dt 

]
+ k 

d�y n ( t ) 

dt 
+ r 

[
dy n ( t ) 

dt 
− dy n ( t − t d ) 

dt 

]
(10) 

where V ′ 
F ( h ) = d V F ( �x n ) /d �x n | �x n = h, V ′ 

B ( h ) = d V B ( �x n −1 ) / �x n −1 | �x n −1 = h, �y n ( t ) = y n +1 ( t ) − y n ( t ) and �y n −1 ( t ) =
y n ( t ) − y n −1 ( t ) . 

According to the Fourier series, Expanding y n ( t ) in Eq. (10) , it derives: 

z 2 = α
[

pV 

′ 
F ( h ) 

(
e ik − 1 

)
+ ( 1 − p ) V 

′ 
B ( h ) 

(
1 − e −ik 

)
− z 

]
+ kz 

(
e ik − 1 

)
+ rt d z 

2 (11) 

Let z = z 1 (ik ) + z 2 (ik ) 2 + · · · and e ik = 1 + ik + 

1 
2 (ik ) 2 + · · · , substituting these into Eq. (11) leads to the first- and the

second-order terms of ik , respectively: 

z 1 = pV 

′ 
F ( h ) + ( 1 − p ) V 

′ 
B ( h ) (12) 

z 2 = 

p 

2 

V 

′ 
F ( h ) − 1 − p 

2 

V 

′ 
B ( h ) − ( 1 − rt d ) τ z 2 1 + λz 1 (13) 

The neutral stability condition is given in Eq. (14) . 

τ = 

pV 

′ 
F ( h ) − ( 1 − p ) V 

′ 
B ( h ) + 2 λ

[
pV 

′ 
F ( h ) + ( 1 − p ) V 

′ 
B ( h ) 

]
2 ( 1 − rt d ) 

[
pV 

′ 
F ( h ) + ( 1 − p ) V 

′ 
B ( h ) 

]2 
(14) 

The uniform traffic flow stable region is expressed in Eq. (15) . 

τ < 

pV 

′ 
F ( h ) − ( 1 − p ) V 

′ 
B ( h ) + 2 λ

[
pV 

′ 
F ( h ) + ( 1 − p ) V 

′ 
B ( h ) 

]
2 ( 1 − rt d ) 

[
pV 

′ 
F ( h ) + ( 1 − p ) V 

′ 
B ( h ) 

]2 
(15) 

When p � = 1 and r = 0 , the stability condition of the BLVD model is obtained in Eq. (16) . 

τ < 

pV 

′ 
F ( h ) − ( 1 − p ) V 

′ 
B ( h ) + 2 λ

[
pV 

′ 
F ( h ) + ( 1 − p ) V 

′ 
B ( h ) 

]
2 

[
pV 

′ 
F ( h ) + ( 1 − p ) V 

′ 
B ( h ) 

]2 
(16) 

When p = 1 and r = 0 , Eq. (15) is transformed into the stability condition of the FVDM in Eq. (17) . 

τ < 

1 + 2 λ

2 V 

′ 
F ( h ) 

(17) 

Fig. 1 shows the phase space ( h, α) diagram of the FVDM with p = 1 and r = 0 s −1 , the BLVD model with p = 0 . 9 and

r = 0 s −1 , the TVBL model with p = 0 . 9 and r = 0 . 1 s −1 , and the TVBL model with p = 0 . 9 and r = 0 . 2 s −1 , respectively.

Other parameters are α′ = 1 m / s , α′′ = 1 m / s , h c = 4 m , λ = 0 . 2 , t d = 1 s . The solid lines show the neutral stability curves of

the above models, the coexistence lines obtained from the mKdV equation are indicated by the dotted lines. It can be clearly

seen from Fig. 1 that the phase diagram is divided into three regions: the stable region which is above the coexistence line,

the metastable region which is between the coexistence line and the neutral stability curve, and the unstable region which

is below the neutral stability curve. In addition, every curve has a critical point, as r increases or p decreases, the position

of critical point and critical stability curve is lowered, and the corresponding stable region expands. This means that the

stability of traffic flow is enhanced, as the r value rises or the p value decreases. The stability region of the BLVD model is

larger than that of the FVDM, which indicates that backward looking effect plays a role in improving the stability of traffic

flow. However, the stability region of the TVBL model is larger than that of the BLVD model, which indicates that the TVBL

model in this paper has a significant effect on enhancing the stability of traffic flow. 

4. TDGL equation 

In order to analyze the nonlinear dynamic characteristics of the TVBL model, the nonlinear wave equation is inferred,

where the propagation characteristics of traffic congestion are demonstrated. In terms of coarse-grained scales, the long

wave-length model is used to describe the traffic flow and the solution of the equation is obtained. The slow-varying char-

acteristic of long waves near the critical stability point is analyzed. For reasons of convenience, Eq. (5) can be rewritten in

light of the headway, as: 
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Fig. 1. The critical stability curves in the headway-sensitivity space. 

 

 

 

 

 

 

 

 

d 2 �x n (t) 

dt 2 
= α[ p ( V F ( �x n +1 ) − V F ( �x n ) ) + ( 1 − p ) ( V B ( �x n ) − V B ( �x n −1 ) ) ] − α

d�x n ( t ) 

dt 

+ λα

(
d�x n +1 ( t ) 

dt 
− d�x n ( t ) 

dt 

)
+ r 

[
d�x n ( t ) 

dt 
− d�x n ( t − t d ) 

dt 

]
(18)

The low scales for space variable n and time variable t are introduced, and the slow variable X and T are defined in

Eq. (19) [22,24] . 

X = ε(n + bt ) , T = ε 3 t , 0 < ε ≤ 1 (19)

where b is the undetermined constant. The headway �x n ( t ) is defined in Eq. (20) . 

�x n (t) = h c + εR (X, T ) (20)

Substituting Eqs. (19) and (20) into Eq. (18) and expanding Eq. (18) by using Taylor’s formula to the fifth-order of ε, the

nonlinear partial differential equation is obtained as: 

ε 2 
[
b − pV 

′ 
F − ( 1 − p ) V 

′ 
B 

]
∂ X R + ε 3 

(
b 2 τ − 1 

2 

pV 

′ 
F + 

1 − p 

2 

V 

′ 
B − λb − rτb 2 t d 

)
∂ 2 X R 

+ ε 4 
{ 

∂ T R −
[ 

1 

6 

(
pV 

′ 
F + ( 1 − p ) V 

′ 
B 

)
+ 

1 

2 

λb − 1 

2 

b 3 t 2 d rτ
] 
∂ 3 X R − 1 

6 

(
pV 

′′′ 
F + ( 1 − p ) V 

′′′ 
B 

)
∂ X R 

3 
} 

+ ε 5 
{ 

( 2 bτ − λ − 2 bt d rτ ) ∂ X ∂ T R −
[ 

1 

24 

(
pV 

′ 
F − ( 1 − p ) V 

′ 
B 

)
+ 

1 

6 

λb + 

1 

6 

b 4 t 3 d rτ
] 
∂ 4 X R 

} 

− 1 

12 

ε 5 
(

pV 

′′′ 
F − ( 1 − p ) V 

′′′ 
B 

)
∂ 2 X R 

3 = 0 (21)

where V ′ 
F 

= V ′ 
F 
(h c ) = d V F (�x n ) /d �x n | �x n = h c , V 

′ 
B 

= V ′ 
B 
(h c ) = d V B (�x n −1 ) /d �x n −1 | �x n −1 = h c , V ′′′ 

B 
= V ′′′ 

B 
(h c ) =

d 3 V B (�x n −1 ) /d�x 3 
n −1 

| �x n −1 = h c and V ′′′ F = V ′′′ F (h c ) = d 3 V F (�x n ) /d�x 3 n | �x n = h c . 

Following, the traffic flow near critical point τ = (1 + ε 2 ) τc is investigated. By taking b = pV ′ 
F 

+ (1 − p) V ′ 
B 
, the second-

order and third-order terms of ε are eliminated from Eq. (21) , which leads to the following equation. 

ε 4 ∂ T R = ε 4 
[ 

1 

6 

(
pV 

′ 
F + ( 1 − p ) V 

′ 
B 

)
+ 

1 

2 

λb − 1 

2 

b 3 t 2 d rτ
] 
∂ 3 X R 

−ε 4 

6 

(
pV 

′′′ 
F + ( 1 − p ) V 

′′′ 
B 

)
∂ X R 

3 + ε 3 
(
−b 2 τ + 

1 

2 

pV 

′ 
F −

1 − p 

2 

V 

′ 
B + λb + rτb 2 t d 

)
∂ 2 X R 

− ε 5 
[ 

1 

6 

( 2 bτ − λ − 2 bt d rτ ) 
(

pV 

′ 
F + ( 1 − p ) V 

′ 
B + 3 λb − 3 b 3 t 2 d rτ

)] 
∂ 4 X R 
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+ 

1 

24 

ε 5 
(

pV 

′ 
F − ( 1 − p ) V 

′ 
B + 4 λb + 4 b 4 t 3 d rτ

)
∂ 4 X R 

+ ε 5 
[ 

1 

6 

( 2 bτ − λ − 2 bt d rτ ) 
(

pV 

′′′ 
F + ( 1 − p ) V 

′′′ 
B 

)
− 1 

12 

(
pV 

′′′ 
F − ( 1 − p ) V 

′′′ 
B 

)] 
∂ 2 X R 

3 (22) 

By using x = ε −1 X and t = ε −3 T , variable X and T in Eq. (22) are converted, and taking S(x, t) = εR (X, T ) , Eq. (22) is

rewritten as Eq. (23) . 

∂ t S = 

[ 
1 

6 

(
pV 

′ 
F + ( 1 − p ) V 

′ 
B 

)
+ 

1 

2 

λb − 1 

2 

b 3 t 2 d rτ
] 
∂ 3 x S 

− 1 

6 

(
pV 

′′′ 
F + ( 1 − p ) V 

′′′ 
B 

)
∂ 3 x S + 

[ 
−b 2 τ + 

1 

2 

pV 

′ 
F −

1 − p 

2 

V 

′ 
B + λb + rτb 2 t d 

] 
∂ 2 x S 

−
[ 

1 

6 

( 2 bτ − λ − 2 bt d rτ ) 
(

pV 

′ 
F + ( 1 − p ) V 

′ 
B + 3 λb − 3 b 3 t 2 d rτ

)] 
∂ 4 x S 

+ 

[ 
1 

24 

(
pV 

′ 
F − ( 1 − p ) V 

′ 
B + 4 λb + 4 b 4 t 3 d rτ

)] 
∂ 4 x S + 

[ 
1 

6 

( 2 bτ − λ − 2 bt d rτ ) 
(

pV 

′′′ 
F + ( 1 − p ) V 

′′′ 
B 

)] 
∂ 2 x S 

3 

− 1 

12 

[
pV 

′′′ 
F − ( 1 − p ) V 

′′′ 
B 

]
∂ 2 x S 

3 (23) 

By adding term 

2 ( 1 −rt d ) [ pV ′ 
F 
+ ( 1 −p ) V ′ B ] 

2 

pV ′ 
F 
−( 1 −p ) V ′ B 

+2 λ[ pV ′ 
F 
+ ( 1 −p ) V ′ B ] 

[
−b 2 τ + 

1 
2 pV ′ F − 1 −p 

2 V ′ B + λb + rτb 2 t d 
]
∂ x S on both left and right sides of 

Eq. (23) and performing t 1 = t and x 1 = x − 2 ( 1 −rt d ) [ pV ′ 
F 
+ ( 1 −p ) V ′ B ] 

2 

pV ′ 
F 
−( 1 −p ) V ′ B 

+2 λ[ pV ′ 
F 
+ ( 1 −p ) V ′ B ] 

[
−b 2 τ + 

1 
2 pV ′ F − 1 −p 

2 V ′ B + λb + rτb 2 t d 
]
t for Eq. (23) , the 

following equation is given: 

.∂ t1 S = 

{ 

∂ x 1 −
pV 

′ 
F − ( 1 − p ) V 

′ 
B + 2 λ

[
pV 

′ 
F + ( 1 − p ) V 

′ 
B 

]
2 ( 1 − rt d ) 

[
pV 

′ 
F 

+ ( 1 − p ) V 

′ 
B 

]2 
∂ 2 x 1 

} 

×
{ [ 

1 

6 

(
pV 

′ 
F + ( 1 − p ) V 

′ 
B 

)
+ 

1 

2 

λb − 1 

2 

b 3 t 2 d rτ
] 
∂ 3 x S −

2 ( 1 − rt d ) 
[

pV 

′ 
F + ( 1 − p ) V 

′ 
B 

]2 

pV 

′ 
F 

− ( 1 − p ) V 

′ 
B 

+ 2 λ
[

pV 

′ 
F 

+ ( 1 − p ) V 

′ 
B 

]
×

(
−b 2 τ + 

1 

2 

pV 

′ 
F −

1 − p 

2 

V 

′ 
B + λb + rτb 2 t d 

)
S − 1 

6 

(
pV 

′′′ 
F + ( 1 − p ) V 

′′′ 
B 

)
S 3 

}
(24) 

The thermodynamic potentials are defined as: 

φ(S) = −
2 ( 1 − rt d ) 

[
pV 

′ 
F + ( 1 − p ) V 

′ 
B 

]2 

pV 

′ 
F 

− ( 1 − p ) V 

′ 
B 

+ 2 λ
[

pV 

′ 
F 

+ ( 1 − p ) V 

′ 
B 

](−b 2 τ + 

1 

2 

pV 

′ 
F −

1 − p 

2 

V 

′ 
B + λb + rτb 2 t d 

)
S 2 

+ 

1 

24 

[
pV 

′′′ 
F + ( 1 − p ) V 

′′′ 
B 

]
S 4 (25) 

Substituting Eq. (25) into Eq. (24) , and then the TDGL equation is derived in Eq. (26) . 

∂ t1 S = 

{ 

∂ x 1 −
pV 

′ 
F − ( 1 − p ) V 

′ 
B + 2 λ

[
pV 

′ 
F + ( 1 − p ) V 

′ 
B 

]
2 ( 1 − rt d ) 

[
pV 

′ 
F 

+ ( 1 − p ) V 

′ 
B 

]2 
∂ 2 x 1 

} 

δ
(S) 

δS 
(26) 


(S) = 

∫ 
dx 1 

[
pV 

′ 
F + ( 1 − p ) V 

′ 
B + 3 λb − 3 b 3 t 2 

d 
rτ

12 

( ∂ x 1 S ) 
2 + φ(S) 

]
(27) 

where δ
( S )/ δS denotes the function derivative. The TDGL, described in Eq. (26) , has two steady-state solutions, excluding

the trivial solution S = 0 , one is the uniform solution: 

S(x 1 , t 1 ) = ±
{ 

12 ( 1 − rt d ) 
(
−b 2 τ + 

1 
2 

pV 

′ 
F − 1 −p 

2 
V 

′ 
B + λb + rτb 2 t d 

)[
pV 

′ 
F + ( 1 − p ) V 

′ 
B 

]2 [
pV 

′ 
F 

− ( 1 − p ) V 

′ 
B 

][
pV 

′′′ 
F 

+ ( 1 − p ) V 

′′′ 
B 

]
+ 2 λ

[
pV 

′ 
F 

+ ( 1 − p ) V 

′ 
B 

][
pV 

′′′ 
F 

+ ( 1 − p ) V 

′′′ 
B 

]
} 

1 
2 

(28) 

And the other is the kink solution: 

S(x 1 , t 1 ) = ±
{ 

12 ( 1 − rt d ) 
(
−b 2 τ + 

1 
2 

pV 

′ 
F − 1 −p 

2 
V 

′ 
B + λb + rτb 2 t d 

)[
pV 

′ 
F + ( 1 − p ) V 

′ 
B 

]2 [
pV 

′ 
F 

− ( 1 − p ) V 

′ 
B 

][
pV 

′′′ 
F 

+ ( 1 − p ) V 

′′′ 
B 

]
+ 2 λ

[
pV 

′ 
F 

+ ( 1 − p ) V 

′ 
B 

][
pV 

′′′ 
F 

+ ( 1 − p ) V 

′′′ 
B 

]
} 

1 
2 

× tanh 

{ [
6 b 2 τ − 3 pV 

′ 
F + 3 ( 1 − p ) V 

′ 
B − 6 λb − 6 rτb 2 t d 

pV 

′ 
F 

+ ( 1 − p ) V 

′ 
B 

+ 3 λb − 3 b 3 t 2 
d 

rτ

] 1 
2 

× ( x 1 − x 0 ) 

} 

(29) 
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where x 0 is constant. Eq. (29) represents the coexistence phase. 

According to the thermodynamic potential, described in Eq. (25) , the coexistence curve, the spinodal line and the critical

point can be obtained. The conditions satisfying the coexistence curve are given in Eq. (30) . 

∂ φ/∂ S = 0 , ∂ 2 φ/∂ S 2 > 0 (30)

The coexistence curve is obtained from Eq. (25) on the basis of the original parameters. 

(�x ) co = h c ±
{ 

12 ( 1 − rt d ) 
(
−b 2 τ + 

1 
2 

pV 

′ 
F − 1 −p 

2 
V 

′ 
B + λb + rτb 2 t d 

)[
pV 

′ 
F + ( 1 − p ) V 

′ 
B 

]2 [
pV 

′ 
F 

− ( 1 − p ) V 

′ 
B 

][
pV 

′′′ 
F 

+ ( 1 − p ) V 

′′′ 
B 

]
+ 2 λ

[
pV 

′ 
F 

+ ( 1 − p ) V 

′ 
B 

][
pV 

′′′ 
F 

+ ( 1 − p ) V 

′′′ 
B 

]
} 

1 
2 

(31)

The condition satisfying the spinodal line is given in Eq. (32) . 

∂ 2 φ/∂S 2 = 0 (32)

The spinodal line is obtained from Eq. (25) , as shown in the following equation: 

(�x ) sp = h c ±
{ 

4 ( 1 − rt d ) 
(
−b 2 τ + 

1 
2 

pV 

′ 
F − 1 −p 

2 
V 

′ 
B + λb + rτb 2 t d 

)[
pV 

′ 
F + ( 1 − p ) V 

′ 
B 

]2 [
pV 

′ 
F 

− ( 1 − p ) V 

′ 
B 

][
pV 

′′′ 
F 

+ ( 1 − p ) V 

′′′ 
B 

]
+ 2 λ

[
pV 

′ 
F 

+ ( 1 − p ) V 

′ 
B 

][
pV 

′′′ 
F 

+ ( 1 − p ) V 

′′′ 
B 

]
} 

1 
2 

(33)

Under the condition ∂ φ/∂ S = 0 , the critical point is given from Eq. (25) . 

(�x ) c = h c , τc = 

pV 

′ 
F − ( 1 − p ) V 

′ 
B + 2 λ

[
pV 

′ 
F + ( 1 − p ) V 

′ 
B 

]
2 ( 1 − rt d ) 

[
pV 

′ 
F 

+ ( 1 − p ) V 

′ 
B 

]2 
(34)

5. mKdV equation 

Likewise, the slowly varying behavior at long wavelengths near the critical point is researched by deriving the mKdV

equation. The slow scales for space variable n and time variable t are also extracted. 

Inserting αc = 

2 ( 1 −rt d ) [ pV ′ 
F 
+ ( 1 −p ) V ′ B ] 

2 

pV ′ 
F 
−( 1 −p ) V ′ B 

+2 λ[ pV ′ 
F 
+ ( 1 −p ) V ′ B ] 

, αc = 

(
1 + ε 2 

)
α into Eq. (21) , the following equation is obtained: 

ε 4 
[
∂ T R − g 1 ∂ 

3 
X R + g 2 ∂ X R 

3 
]

+ ε 5 
[
g 3 ∂ 

2 
X R + g 4 ∂ 

4 
X R + g 5 ∂ 

2 
X R 

3 
]

= 0 (35)

where 

g 1 = 

1 

6 

(
pV 

′ 
F + ( 1 − p ) V 

′ 
B 

)
+ 

1 

2 

λb − 1 

2 

b 3 t 2 d rτc (36)

g 2 = −1 

6 

(
pV 

′′′ 
F + ( 1 − p ) V 

′′′ 
B 

)
(37)

g 3 = b 2 τc − rτc b 
2 t d (38)

g 4 = 

1 

6 

( 2 bτc − λ − 2 bt d rτc ) 
[

pV 

′ 
F + ( 1 − p ) V 

′ 
B + 3 λb − 3 b 3 t 2 d rτc 

]
− 1 

24 

(
pV 

′ 
F − ( 1 − p ) V 

′ 
B + 4 λb + 4 b 4 t 3 d rτc 

)
(39)

g 5 = 

1 

6 

( 2 bτc − λ − 2 bt d rτc ) 
(

pV 

′′′ 
F + ( 1 − p ) V 

′′′ 
B 

)
− 1 

12 

[
pV 

′′′ 
F − ( 1 − p ) V 

′′′ 
B 

]
(40)

where V ′ 
F 

= V ′ 
F 
(h c ) = d V F (�x n ) /d �x n | �x n = h c , V 

′ 
B 

= V ′ 
B 
(h c ) = d V B (�x n −1 ) /d �x n −1 | �x n −1 = h c , V ′′′ 

B 
= V ′′′ 

B 
(h c ) =

d 3 V B (�x n −1 ) /d�x 3 
n −1 

| �x n −1 = h c and V ′′′ 
F 

= V ′′′ 
F 

(h c ) = d 3 V F (�x n ) /d�x 3 n | �x n = h c . 

To obtain the standard mKdV equation, the following transformation is made to Eq. (35) : 

T = 

1 

g 1 
T ′ , R = 

√ 

g 1 
g 2 

R 

′ (41)

Therefore, the regularized mKdV equation, featuring an O ( ε) correction term, is obtained in Eq. (42) . 

∂ T ′ R 

′ = ∂ 3 X R 

′ − ∂ X R 

′ 3 − ε 
(

g 3 
g 1 

∂ 2 X R 

′ + 

g 4 
g 1 

∂ 4 X R 

′ + 

g 5 
g 2 

∂ 2 X R 

′ 3 
)

(42)

If the term O ( ε) is ignored, the mKdV equation becomes one with the kink solution as the desired solution: 

R 

′ 
0 

(
X, T ′ 

)
= 

√ 

c tanh 

√ 

c 

2 

(
X − cT ′ 

)
(43)
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Fig. 2. Space-time evolution of the velocity after t = 16500 time step under different p values. 

 

 

 

 

 

 

 

 

 

Following, assuming that R ′ (X, T ′ ) = R ′ 
0 
(X, T ′ ) + εR ′ 

1 
(X, T ′ ) , the O ( ε) correction term is considered. In order to get the

propagation velocity c for the kink solution, R ′ 0 (X, T ′ ) must satisfy the solvability condition. (
R 

′ 
0 , M 

[
R 

′ 
0 

])
≡

∫ + ∞ 

−∞ 

dX 

′ R 

′ 
0 M 

[
R 

′ 
0 

]
(44) 

where M[ R ′ 0 ] = 

g 3 
g 1 

∂ 2 X R 
′ + 

g 4 
g 1 

∂ 4 X R 
′ + 

g 5 
g 2 

∂ 2 X R 
′ 3 . 

The propagation velocity c for the kink solution is obtained. 

c = 

5 g 2 g 3 
2 g 2 g 4 − 3 g 1 g 5 

(45) 

So, the general kink-antikink soliton solution of the headway from the mKdV equation is obtained. 

�x n (t) = h c ±
√ 

g 1 c 

g 2 

(
τ

τc 
− 1 

)
× tanh 

√ 

c 

2 

(
τ

τc 
− 1 

)
×

[ 
n + ( 1 − cg 1 ) 

(
τ

τc 
− 1 

)
t 

] 
(46) 

Then, the amplitude of the general kink-antikink soliton solution is given in Eq. (47) . 

A = 

√ 

g 1 c 

g 2 

(
τ

τc 
− 1 

)
(47) 

where V ′′′ F < 0 , V ′′′ B < 0 , the general kink-antikink soliton solution also denotes the coexisting phase, which includes the

free flow phase which is under low vehicle density and the congested phase which is under high vehicle density. So, the

coexistence curves for the free flow phase and the congested phase can be described by �x n = h c + A and �x n = h c − A, as

shown by the dotted line in Fig. 1 . The kink solution Eq. (46) of the mKdV equation is consistent with the kink solution

Eq. (29) of the TDGL equation. Therefore, the jamming transition can be described not only by the TDGL equation with a

nontraveling solution, but also by the mKdV equation with a propagating solution. 

6. Numerical simulations 

In order to verify the accuracy of the theoretical analysis, the TVBL model is simulated numerically. In this study, the

periodic boundary conditions are adopted, while the initial conditions are given as follows: the road length L = 400 m , the

total car number N = 100 , every time step is 0.1 s, all vehicles are evenly distributed with the same headway distance, and

a small disturbance is applied to the head vehicle when the traffic flow is stable, namely 

x 1 (0) = L/N + 1 

x n (0) = (n − 1) L/N(n = 2 , 3 , . . . , N) 
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Fig. 3. The velocity profile of each panel, as illustrated in Fig. 2 at t = 180 0 0 time step . 

Fig. 4. Space-time evolution of the velocity after t = 16500 time step under different values of p and r . 

 

 

 

 

 

 

 

x ′ n (0) = V (L/N)(n = 1 , 2 , . . . , N) where α′ = 1 m / s , α′′ = 1 m / s , h c = 4 m , t d = 1 s [34,35] . 

Fig. 2 depicts the space-time evolution diagram of the velocity after t = 16500 time step in the case of different param-

eter p . Other parameters are: α = 0 . 85 s −1 , λ = 0 . 2 and r = 0 . 1 s −1 . From pattern (a) to pattern (d) in Fig. 2 , the parameter

p takes different values, namely p = 1 , p = 0 . 96 , p = 0 . 92 and p = 0 . 88 , respectively. It can be clearly shown that the traffic

flow is unstable in patterns (a)–(c) and the traffic flow is stable in pattern (d). Specifically, after a small disturbance is ap-

plied to the steady traffic flow, as time increases, the small disturbance is continuously amplified, so that the propagating

backward stop-and-go traffic jam appears in patterns (a)–(c), whereas this small disturbance disappears in pattern (d). As

the value of parameter p increases, the amplitude of the density waves decreases, traffic flow becomes stable and traffic



10 G. Ma, M. Ma and S. Liang et al. / Commun Nonlinear Sci Numer Simulat 85 (2020) 105221 

Fig. 5. The velocity profile of each panel, as illustrated in Fig. 4 at t = 180 0 0 time step . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

jam is alleviated accordingly, especially in pattern (d), where the amplitude of the density waves deteriorates and the traffic

flow throughout the space is uniform. This also means that the TVBL model has a general positive impact on traffic flow

and more specifically it can make it more stable. 

Fig. 3 represents the velocity profile of each panel, as illustrated in Fig. 2 at t = 180 0 0 time step . Fig. 3 provides similar

results as Fig. 2 . As parameter p decreases, the amplitude of the density waves decreases. Traffic congestion is gradually

alleviated, and the traffic flow becomes more stable. 

Fig. 4 demonstrates the space-time evolution diagram of the velocity after t = 16 , 500 time step in terms of different

parameters p and r , where α = 0 . 85 s −1 and λ = 0 . 2 remain constant. In the case of pattern (a) with p = 1 and r = 0 s −1 ,

the TVBL model becomes the FVDM. In the case of pattern (b) with p = 0 . 9 and r = 0 s −1 , the TVBL model becomes the

BLVD model. It can be clearly seen that the traffic flow is unstable in pattern (a) and (b), the traffic flow is relatively stable

in pattern (c) with p = 0 . 9 and r = 0 . 1 s −1 , the traffic flow is stable in pattern (d) with p = 0 . 9 and r = 0 . 2 s −1 . When

small disturbances are added into the stable traffic flow, as time continues, these are amplified and the traffic jam appears

in pattern (a) and (b), while they almost dissipate in pattern (c) and small disturbances totally dissipate in pattern (d).

The amplitude of the density waves in pattern (b) is smaller than that in pattern (a). From patterns (b)-(d) in Fig. 4 , the

amplitude of the density waves gradually becomes weak and the stability is significantly improved for r = 0 , 0 . 1 , 0 . 2 s −1 ,

which means that the time-delayed velocity difference considered in this paper has a positive effect on the stability of

traffic flow. Hence, as parameter r increases and parameter p decreases, traffic flow becomes more and more stable, which

is consistent with the conclusion derived in Fig. 1 . 

Fig. 5 shows the velocity profile of each panel, as illustrated in Fig. 4 at t = 180 0 0 time step . Fig. 5 demonstrates similar

results as Fig. 4 . Therefore, as parameter p decreases and parameter r increases, traffic flow becomes smoother and more

stable. 

7. Conclusions and discussion 

Based on the FVDM, this paper proposes a modified car-following model by taking into account the time-delayed velocity

difference and backward looking effect to analyze traffic behavior and eliminate traffic jams. Through linear stability analy-

sis, the neutral stability curve and critical stability point of the TVBL model are obtained, which clearly shows that the TVBL

model can enhance the stability of traffic flow. What’s more, the TVBL model is also analyzed through nonlinear method,

the TDGL equation describing traffic behavior near the critical stability point has been inferred by making use of the re-

ductive perturbation method. Also, the relationship between the TDGL and the mKdV equations has been demonstrated by

establishing the mKdV equation. The results of numerical simulation show that the TVBL model can produce better results,

regarding traffic flow stabilization and traffic congestion alleviation, which are in accordance with the conclusions of the

theoretical analysis. In the future, in order to enrich and expand the research scope, we will further study the situation

that drivers’ response delay time obeys various statistical distributions. At the same time, we will also use other possible

methodologies such as bifurcation analysis [36] , lie group reduction [37] to achieve the objective in relation in this paper. 
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